APPLICATION OF THE HARDWARE-SOFTWARE COMPLEX "SALIVA" IN INTERNATIONAL DIGITAL INTEGRATION FOR THE DIAGNOSIS OF GASTROINTESTINAL DISEASES
Ключевые слова:
Hardware-Software Complex SALIVA, Digital Economy, International Digital Integration, Diagnosis of Gastrointestinal Diseases, Non-Invasive Methods, Digital Medicine, Data StandardizationАннотация
This article examines the application of the hardware-software complex "Saliva" in the context of international digital integration for the diagnosis of gastrointestinal diseases. The relevance of this research is driven by the increasing demand for effective and innovative diagnostic methods that can be integrated into the digital healthcare systems of various countries.
The "Saliva" complex represents an advanced technology that enables precise analysis of the gastrointestinal tract's condition through non-invasive methods. The article provides a detailed description of the operating principles of the complex, its advantages over traditional diagnostic methods, and discusses the prospects for using "Saliva" within the framework of international cooperation in digital medicine.
The study analyzes the effectiveness of the complex in various clinical scenarios and evaluates the potential benefits of its implementation on an international level. Special attention is given to issues of data standardization and compatibility, which are key aspects for the successful integration of "Saliva" into global medical networks
Библиографические ссылки
1. https://lex.uz/docs/-4806730 RESOLUTION PRESIDENT OF THE REPUBLIC OF UZBEKISTAN ON MEASURES TO FURTHER SUPPORT EXPORT ACTIVITIES
2. https://lex.uz/docs/6750819 RESOLUTION PRESIDENT OF THE REPUBLIC OF UZBEKISTAN ON ADDITIONAL MEASURES TO FURTHER INCREASE THE PRODUCTIVE AND EXPORT POTENTIAL OF THE ELECTRICAL INDUSTRY
3. https://lex.uz/docs/6796146 RESOLUTION CABINET OF MINISTERS OF THE REPUBLIC OF UZBEKISTAN ON MEASURES TO SUPPORT THE TRAINING OF QUALIFIED SPECIALISTS IN THE EXPORT OF IT SERVICES
4. Cheng C. et al. A wireless, ingestible pH sensing capsule system based on iridium oxide for monitoring gastrointestinal health //Sensors and Actuators B: Chemical. – 2021. – Т. 349. – С. 130781.
5. Lebedev-Stepanov P. V. et al. Medical diagnostics by microstructural analysis of biological liquid dried patterns as a problem of bioinformatics //Journal of Bioinformatics and Genomics. – 2018. – №. 1. – С. 1-1.
6. Ramakrishna K., Rao R. S. Medicinometrics and pharmacometrics //Journal of Applicable Chemistry. – 2015. – Т. 4. – №. 1. – С. 1-98.
7. Mukhtar H. et al. An IoT framework for screening of COVID-19 using real-time data from wearable sensors //International journal of environmental research and public health. – 2021. – Т. 18. – №. 8. – С. 4022.
8. Dunn J., Runge R., Snyder M. Wearables and the medical revolution //Personalized medicine. – 2018. – Т. 15. – №. 5. – С. 429-448.
9. Narayanan S. P., Anderson B., Bharucha A. E. Sex-and gender-related differences in common functional gastroenterologic disorders //Mayo Clinic Proceedings. – Elsevier, 2021. – Т. 96. – №. 4. – С. 1071-1089.
10. Sifrim D. et al. Normal values and regional differences in oesophageal impedance-pH metrics: a consensus analysis of impedance-pH studies from around the world //Gut. – 2021. – Т. 70. – №. 8. – С. 1441-1449.
11. Aledhari M. et al. Biomedical IoT: enabling technologies, architectural elements, challenges, and future directions //IEEE Access. – 2022. – Т. 10. – С. 31306-31339.
12. Fati S. M., Senan E. M., Azar A. T. Hybrid and deep learning approach for early diagnosis of lower gastrointestinal diseases //Sensors. – 2022. – Т. 22. – №. 11. – С. 4079.
13. Vania M. et al. Recent Advances in Applying Machine Learning and Deep Learning to Detect Upper Gastrointestinal Tract Lesions //IEEE Access. – 2023.
14. Ramzan M. et al. Gastrointestinal tract infections classification using deep learning //Comput. Mater. Contin. – 2021. – Т. 69. – С. 3239-3257.
15. Sakamoto T. et al. Machine learning in gastrointestinal surgery //Surgery Today. – 2022. – Т. 52. – №. 7. – С. 995-1007.
16. Berbís M. A. et al. Role of artificial intelligence in multidisciplinary imaging diagnosis of gastrointestinal diseases //World Journal of Gastroenterology. – 2021. – Т. 27. – №. 27. – С. 4395.
17. Iakovidis D. K. et al. Detecting and locating gastrointestinal anomalies using deep learning and iterative cluster unification //IEEE transactions on medical imaging. – 2018. – Т. 37. – №. 10. – С. 2196-2210.
18. Visaggi P. et al. Artificial intelligence in the diagnosis of upper gastrointestinal diseases //Journal of Clinical Gastroenterology. – 2022. – Т. 56. – №. 1. – С. 23-35.
19. http://science.spb.ru/allnews/item/1048-biosensor
20. Moseev, Timofey D., et al. "Fluoroaromatic 2H-imidazole-based push-pull fluorophores: Synthesis, theoretical studies, and application opportunities as probes for sensing the pH in saliva."Dyes and Pigments 202 (2022): 110251.
21. P. Pataranutaporn, A. Jain, C. M. Johnson, P. Shah and P. Maes, "Wearable Lab on Body: Combining Sensing of Biochemical and Digital Markers in a Wearable Device," 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 2019, pp. 3327-3332, doi: 10.1109/EMBC.2019.8857479.
22. https://www.securetec.net/de/ официальный сайт DrugWipe™ S
23. Yakhshiboyev R. DEVELOPMENT OF A “SALIVA” HARDWARE-SOFTWARE COMPLEX MODULES FOR THE PRIMARY DIAGNOSIS OF GASTROINTESTINAL DISEASES //Science and innovation. – 2023. – Т. 2. – №. A2. – С. 27-34.
24. Yakhshiboyev R. E. DEVELOPMENT OF A HARDWARE MODULES FOR THE PRIMARY DIAGNOSIS OF GASTROINTESTINAL DISEASES //Proceedings of International Conference on Scientific Research in Natural and Social Sciences. – 2023. – Т. 2. – №. 1. – С. 84-90.
25. Yaxshiboyev R. Development of a software and hardware complex for primary diagnostics based on deep machine learning //Central asian journal of education and computer sciences (CAJECS). – 2022. – Т. 1. – №. 4. – С. 20-24.
26. Yaxshiboyev R., Yaxshiboyeva D. Analysis of algorithms for prediction and preliminary diagnostics of gastroenterological diseases //Central asian journal of education and computer sciences (CAJECS). – 2022. – Т. 1. – №. 2. – С. 49-56
27. Kudratillaev MB, Yakhshiboev R. E. (2023). ANALYSIS OF INNOVATIVE EQUIPMENT FOR THE DIAGNOSIS OF GASTROENTEROLOGICAL DISEASES. Innovative Technologica: Methodical Research Journal, 4(03), 13–23. https://doi.org/10.17605/OSF.IO/6MP8B
28. Yakhshiboyev R. E., Kudratillayev M. B., Siddikov B. N. FORSCHUNG VON INNOVATIVER AUSRÜSTUNG FÜR DIE DIAGNOSE VON MAGEN-DARMERKRANKUNGEN //International Bulletin of Applied Science and Technology. – 2023. – Т. 3. – №. 3. – С. 100-105.
29. Yakhshiboyev R. E. HARDWARE-SOFTWARE COMPLEXES FOR THE PRIMARY DIAGNOSIS OF GASTROENTEROLOGICAL DISEASES //Eurasian Journal of Mathematical Theory and Computer Sciences. – 2023. – Т. 3. – №. 1. – С. 120-127.
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Copyright (c) 2025 Yakshiboyev R.E. (Author)

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.