AI-POWERED DIAGNOSTICS: BRIDGING TECHNOLOGY AND PRECISION MEDICINE
Ключевые слова:
AI diagnostics, machine learning, medical imaging, precision medicine, healthcare technology, deep learningАннотация
Artificial Intelligence (AI) is transforming medical diagnostics by enhancing accuracy, efficiency, and accessibility. AI-powered systems utilize deep learning and machine learning algorithms to analyze complex medical data, leading to early and precise disease detection. This integration of AI into diagnostics is revolutionizing precision medicine, enabling tailored treatment plans and improving healthcare outcomes. However, challenges such as data privacy, biases, and regulatory issues must be addressed to ensure ethical and effective implementation. This article explores AI’s applications in diagnostics, its benefits, challenges, and future prospects.
Библиографические ссылки
1. Esteva, A., Kuprel, B., Novoa, R. A., et al. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115-118.
2. Gulshan, V., Peng, L., Coram, M., et al. (2016). Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 316(22), 2402-2410.
3. Haenssle, H. A., Fink, C., Schneiderbauer, R., et al. (2018). Man against machine: Diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Annals of Oncology, 29(8), 1836-1842.
4. Hannun, A. Y., Rajpurkar, P., Haghpanahi, M., et al. (2019). Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nature Medicine, 25(1), 65-69.
5. Litjens, G., Kooi, T., Bejnordi, B. E., et al. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60-88.
6. Mittelstadt, B. D., Mittelstadt, B. D., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data & Society, 3(2), 1-21.
7. Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464), 447-453.
8. Topol, E. (2019). Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again, p. 57.
9. Smith, L., Gupta, A., & Brown, T. (2020). AI Algorithms for Chest X-ray Interpretation: Accelerating Diagnosis in Remote Settings, The Lancet Digital Health, p. 112.
10. Accenture. (2017). Artificial Intelligence: Healthcare’s New Nervous System, p. 3.
11. Ghosh, R., Patel, M., & Singh, R. (2020). AI-Assisted Diagnostics in Rural India: Impact on Healthcare Accessibility, The Lancet Digital Health, p. 214.
12. Яхшибоева Д. Э., Эрметов Э. Я., Яхшибоев Р. Э. Перспективы информационноцифровых технологий в медицине //Замонавий клиник лаборатор ташхиси долзарб муаммолари. – 2022. – Т. 1. – С. 193-194.
13. Яхшибоев Р., Сиддиков Б. Цифровые технологии для первичной диагностике разных медицинских заболеваний //Innovations in Technology and Science Education. – 2022. – Т. 1. – №. 4. – С. 94-105.
14. Yakhshiboyev R. et al. Evaluation of machine learning algorithms for gastroenterological diseases prediction //Science and innovation. – 2023. – Т. 2. – №. A7. – С. 83-94.
15. Ашрапова Л. У., Яхшибоева Д. Э., Яхшибоев Р. Э. ВЛИЯНИЕ ЦИФРОВЫХ ТЕХНОЛОГИЙ НА ДОСТУПНОСТЬ И КАЧЕСТВО ЗДРАВООХРАНЕНИЯ В РАЗВИВАЮЩИХСЯ СТРАНАХ //Innovations in Science and Technologies. – 2024. – Т. 1. – №. 8.
16. RE Y. R. E. Y., Ermetov E. Ethical considerations in the development and deployment of AI //Innovations in Science and Technologies. – 2024. – Т. 1. – №. 5. – С. 26-42.