BIG DATA IN HEALTHCARE: HOW ICT IS TRANSFORMING MEDICAL RESEARCH
Keywords:
Big Data, ICT (Information and Communication Technology), Healthcare Analytics, Artificial Intelligence (AI), Machine Learning, TelemedicineAbstract
This article explores the transformative role of Big Data and Information and Communication Technology (ICT) in modern healthcare and medical research. It examines how data analytics enables significant advancements, including disease modeling, predictive analytics, personalized medicine, and medical imaging analysis. The integration of ICT, such as electronic health records (EHRs), artificial intelligence (AI), and telemedicine, facilitates efficient data processing, real-time patient monitoring, and improved decision-making for healthcare professionals. Additionally, the paper discusses key challenges, such as data security, ethical concerns, and system interoperability, highlighting the need for robust regulatory frameworks. By leveraging Big Data and ICT, healthcare is evolving toward more precise, efficient, and patientcentered solutions.
References
1. Jha, A. K., DesRoches, C. M., Campbell, E. G., et al. (2009). Use of Electronic Health Records in U.S. Hospitals. New England Journal of Medicine, 360(16), 1628-1638.
2. Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the Future — Big Data, Machine Learning, and Clinical Medicine. New England Journal of Medicine, 375(13), 1216-1219.
3. Kohane, I. S. (2015). Ten Things We Have to Do to Achieve Precision Medicine. Science, 349(6243), 37-38.
4. Gillies, R. J., Kinahan, P. E., & Hricak, H. (2016). Radiomics: Images Are More than Pictures, They Are Data. Radiology, 278(2), 563-577.
5. Dorsey, E. R., & Topol, E. J. (2016). State of Telehealth. New England Journal of Medicine, 375(2), 154-161.
6. Raghupathi, W., & Raghupathi, V. (2014). Big Data Analytics in Healthcare: Promise and Potential. Health Information Science and Systems, 2(1), 3.
7. Murdoch, T. B., & Detsky, A. S. (2013). The Inevitable Application of Big Data to Health Care. JAMA, 309(13), 1351-1352.
8. Mittelstadt, B. D., & Floridi, L. (2016). The Ethics of Big Data: Current and Foreseeable Issues in Biomedical Contexts. Science and Engineering Ethics, 22(2), 303-341.
9. Wang, Y., Kung, L. A., & Byrd, T. A. (2018). Big Data Analytics: Understanding its Capabilities and Potential Benefits for Healthcare Organizations. Technological Forecasting and Social Change, 126, 3-13.
10. Ristevski, B., & Chen, M. (2018). Big Data Analytics in Medicine and Healthcare. Journal of Integrative Bioinformatics, 15(3), 1-5. Dorsey, E. R., & Topol, E. J. (2016). State of telehealth. New England Journal of Medicine, 375(2), 154-161.
11. Яхшибоева Д. Э., Эрметов Э. Я., Яхшибоев Р. Э. Перспективы информационноцифровых технологий в медицине //Замонавий клиник лаборатор ташхиси долзарб муаммолари. – 2022. – Т. 1. – С. 193-194.
12. Яхшибоев Р., Сиддиков Б. Цифровые технологии для первичной диагностике разных медицинских заболеваний //Innovations in Technology and Science Education. – 2022. – Т. 1. – №. 4. – С. 94-105.
13. Yakhshiboyev R. et al. Evaluation of machine learning algorithms for gastroenterological diseases prediction //Science and innovation. – 2023. – Т. 2. – №. A7. – С. 83-94.
14. Ашрапова Л. У., Яхшибоева Д. Э., Яхшибоев Р. Э. ВЛИЯНИЕ ЦИФРОВЫХ ТЕХНОЛОГИЙ НА ДОСТУПНОСТЬ И КАЧЕСТВО ЗДРАВООХРАНЕНИЯ В РАЗВИВАЮЩИХСЯ СТРАНАХ //Innovations in Science and Technologies. – 2024. – Т. 1. – №. 8.
15. RE Y. R. E. Y., Ermetov E. Ethical considerations in the development and deployment of AI //Innovations in Science and Technologies. – 2024. – Т. 1. – №. 5. – С. 26-42.