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Abstract: In this article, the stability of a cylindrical shell is investigated in a geometric
nonlinear setting. The cylindrical shell is subjected to static and dynamic influences. The shell
material is orthotropic and has rheological properties that are described by the hereditary
Boltzmann-Voltaire theory. The characteristic deflections equal to the shell thickness are taken as a
criterion for dynamic buckling. As a result of the study, the character of measuring the deflection of
the shell, taking into account the rheological properties of the material, was obtained. It was revealed
that with an increase in the loading rate, the dynamic critical load increases several times in
comparison with the static one.
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1. INTRODUCTION

Thin-walled cylindrical shells are widely used in modern engineering structures such as aerospace
vehicles, pipelines, pressure vessels, storage tanks, and marine constructions. These structural
elements often operate under complex loading conditions that include static, dynamic, and impact-
type compressive forces. Under such circumstances, the problem of stability becomes one of the most
critical aspects in ensuring the reliability and safety of structures. Numerous experimental and
theoretical investigations have shown that thin shells are highly sensitive to imperfections, material
properties, and loading rates. In many cases, the critical loads predicted by classical linear stability
theory significantly overestimate the actual buckling loads observed in practice.

To obtain more accurate predictions, it is necessary to employ geometrically nonlinear
theories that take into account large deflections comparable with the shell thickness. In addition, real
structural materials frequently exhibit time-dependent behavior such as creep and stress relaxation.
These effects can be adequately described by viscoelastic constitutive models based on hereditary
integral relations, among which the Boltzmann—Volterra theory is widely accepted. The incorporation
of viscoelasticity into stability analysis allows a more realistic representation of material behavior
under dynamic loading.

Another important factor influencing shell stability is the presence of initial geometric
imperfections. Such imperfections inevitably arise during manufacturing, transportation, and
assembly processes and can drastically reduce the load-carrying capacity of shells. Therefore,
accounting for initial imperfections together with material viscoelasticity and geometric nonlinearity
is essential for reliable stability assessment.

The present study is devoted to the investigation of nonlinear vibrations and dynamic stability
of orthotropic viscoelastic cylindrical shells subjected to compressive loads. The governing nonlinear
integro-differential equations are derived using the classical shell theory with geometric nonlinearity.
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The Bubnov—Galerkin method is applied to reduce the problem to a system of ordinary differential
equations, which is subsequently solved numerically using the Runge—Kutta method. The influence
of loading rate, material viscosity, orthotropy, and wave numbers on the shell response and dynamic
buckling behavior is analyzed in detail.

2. LITERATURE REVIEW.
Let us consider a cylindrical shell that perceives the ultimate compressive forces (Fig. 1). It is
assumed that there is no wave process of stress propagation in the middle surface. Let the shell be
hinged at the ends with rigid frames.
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Figure 1. Cylindrical shell that can withstand extreme compressive loads.

Let us approximate the expression for the deflection of the function of spatial coordinates and
time by the expression [3] corresponding to the static solutions of the first approximation, but taking

into account the possible changes in the number of nodal lines in different directions.
2 mBx

w(x,y,t) = f(t)(sianBxsin%y TP sin®—+ ¢q),
(1)
parameter f(t) - characterizes the deflection arrow of the shell; L - length; R - radius; m - the number
of half-waves along the generatrix; n number of waves in a circle; i is the ratio of the "asymmetrical"
component of the deflection to the symmetrical one; f¢; defines the axisymmetric deflection
associated with the "deflection" of the frames.

We consider the shell "imperfect", i.e. having some initial imperfection in shape. Initial
imperfections in the shape of the shell usually arise during the manufacture, transportation and
installation of products, as well as during the design of the shell elements.

It is known that the initial imperfections of the shape play a significant role in the behavior of
thin-walled shells; therefore, it is very important to take them into account when calculating shells
for strength and stability. Often these imperfections are accounted for as initial deflection deviations.
In the problem under consideration, we take the initial deflection of the deflection in the same form
as the total deflection, that is,

Wo = fo(SIn == sin "+ sin® 5= +)
e

For this problem, the initial equations will be

V4w —w,) = = [L(W,F) + VF + E + P] )

VEF = —B, E (L(W, w) — L(WO,WO)) + Vow — kao] +
Buy JL G (¢ = D) [3 (L' W, w) — L (Wo, w)) + View — Viw, | dz

3)
Substituting (1) and (2) into the right-hand side of the second equation (3) and integrating, we
determine the stress function in the middle surface
F S Bll (Kl coS 2":7:

here q is the intensity of the external pressure;
P is the intensity of dynamic compressive forces applied to the ends of the shell.
Applying the Bubnov-Galerkin method to the first equation of system (3), we obtain
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foL foan X sinrxsinsydxdy = o,

(5)
fOL fOZﬂRXsin2 rxdxdy = o, (6)
where
X =L 04w —w,) — L(w,F) = VF + p 22
12 0 ’ k Poe
(7)
Integrating (5) and (6) with allowance for (1), (4), and (7), we obtain the equation of motion
for the shell.
o4 +C, 1L [(1+a)&+a,é +add +aé +a& +a bl +a, +a &, | =
dz T a4y ) o) T ay616, T A36,6) Tayo, Tdso) A Td; Tdgo 6, | =

=(a,+a,, XIG t-5)¢ (s)ds+(a, +a,&, IG T—S é‘l«fzds+(a7«§l+a3)IG(T—s)§12(S)ds+
0 0 0

. _ T T (8)
+(a4+a8§1)I (z—s)&ds+( a5+a9§l+am§2)IG (7-5) ds+a12§IIG s)&ds+C, 510—0

T

d’ P
= +C, [1 _FJ[éz +b &S +b,& +bG +bx&E, +b5}—C2 Fégz,o I T=s ézds +
2

2
dr 5 0

+(b.g, +153)]G(r—s);ds+154jc;(r—s)§fds+(156 +b& )jc(r—s);gzds

the following dimensionless parameters are introduced here:

_Ls _fp_PR
f - n fO h’ Blih
T, = B11k1§0JT0 = ’
P
2 2
(mm)?k, (1 T1)
1 (mmks)?
T =Bq1 7 >
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When solving systems of equations (8) and in other dynamic problems of viscoelasticity, we
usually encounter some difficulties, one of which is the calculation of the integral operators

[, G(t =D& (@dr, [, G(t — DE @, [, G(t — D& E(Ddx, ©)

included in the equations of motion (8).

3. METHODOLOGY.

Before proceeding to the solution of system (8), it is necessary to calculate convolutions of
the form (9). In the system of equations (8), the argument t does not take part in an explicit form.
When t = 0 the following conditions are met:

§:1(0) = f{)'fz(o) = ch’fzt 51152t 8(2
because there are always solutions in homogeneous differential equations that differ from zero only
under the conditions t = 0
yi(0) = y?(o)} yi(0) = 0} yi(0) = y?}
yie(0) =0 )’y (0) =0) "y (0) =7

For carefully manufactured casings, the amplitude of the initial deflection can be calculated
to be approximately 0.001; 0.0001 times the thickness. These data, as shown in [1], are in satisfactory
agreement with the results of experiments related to carefully manufactured samples. Therefore, we
will accept

£ =¢6=01-10738 =§ =0, (10)

The &, (1), &,(7) functions included in the integral operators in (8) can be represented as a

power series [4]
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§1(1) = Xk=o P75, & (1) = Xk=0 4, 75, (11)

Let (1), &, (1) be areal smooth function with the integral 0 < T < oo, n - the derivative with
respect to T. Then the functions &;, &, can be expanded in a Taylor series at the point 7, = 0.

&&%@ﬂ®+ﬁwﬁ+éfmz+-+€@wﬁ
£2(1) = £(0) + & (0)T + - & (0)r?+... +— £ ()"

Comparing the series (11) we find the unknown coefﬁc1ents P.,qx

(1)

Py =¢,(0) ) qo = £2(0) )

P, = 51’(0) q1 = 52,(0)

P 4 =58"©0 |

P, =$$€1(n)(0b an =$$€2(n)(0b
(13)

The derivatives £(0), 7(0) (n = 1, 2, 3) are determined from the system of equations (8)
with T = 0, then (11) Taking into account (12-13) will take the following form

60 = Thoog 61 (07

£2(0) = Tioo 657 (0
According to d'Alembert's signs, if lim D, = D* exists, then with D* < 1 this series is called
n—-oo

(14)

absolutely convergent, with D* > 1 - absolutely divergent, where
|an s t™
" lagtt]

In the case under consideration

D =—,R=|1)| « —— > o, (15)

k+1 llmk—»oom

where R is the radius of convergence. This means that the series (14) under consideration absolutely
converge in the —oo < 7 < oo interval and in these series, it is possible to limit ourselves to four
terms, since the other terms rapidly tend to zero.

Substituting (14) in f " Gy1(t — 8)&,(S)dS and making the substitution T — S = u, we get

t —B(t-s) e~ B(T=9) n T p—Pu n
f e (t —s5)* ¢, (s)ds = f T Z Peskds = f e Z P (7, —w)*du
0 =0 0 k=0

-pu -Bu
= 2;}:1 Pl,n—k(T) f(;[ 31—0[ ukdu - Z;(l=o Pka f(;[ 31—0[ dur (16)
where

n—k
Pl,n—k = Z biTlr
k=0

Integral I = fOT [=P¥u~*1quis a tabulated function. Values in the form of a table are given

in [4] or integration can be performed numerically, as after integration by parts once, the singularity
of the function disappears. Integrating I, = [ OT [~BSgatk=1py

fore"ﬁs setk=lds = P, (D)e P + fofe_ﬁss"‘_lds, (17)
where
k k k o
. —-j+a
Pz,k(T) = ch TJ,Pz,k =0,y = HT,VO =1
j=0 j=1
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Substituting (17) into (16), we define the expression for the integral convolutions
T e~ BE=9) s

e B
e e S0 Pus*ds = SRy P [Pose o + Vi Jy S 5| = Shoo Pt fy Smzds,  (18)
Similarly converted and integral operators
Jy Gt = 9)&,(s)ds, [, G(t — $)&1 ()&, (s)ds, [ G(t — )& (s)ds, (19)
Further, the system of equations (8), taking into account (19), is solved by the numerical
Runge-Kutta method with the following initial data

2
'8112 = 1,@ =0,78;—— P _ = 0,004; 2k _ nz = 0,6;
PoC B11 ﬁ11 "1
n
B =———,k; = 0.01;k; = 0.01; Gy, (t) = A,e~%ttFo1,

Gy Gy
A, = 0.0048; @, = 0.2; B, = 0.05; 22 = N, = 0.06;-22 = N, = 0.38;
Gll Gll
G 107 p=str=r=
Git bt =TE R

4. ANALYSIS AND RESULTS.
For visco-elastic shells, the nature of the change in the deflections &;, &, in time at various
dynamic loads, given in Figures 2-4. Various series of curves at n = 3 in Fig. 2a refer to those loaded

with S = 0,8; 1,2; 2-10° @ velocities for viscoelastic shells. In this case, significant increases in

the & and &, deflections are observed in the t* = 20 < 40 time interval at S = 3 - 10° MP2 The

influence of the number of waves n at a constant loading rate S on the changes in the deﬂectlons &4,
&, for a viscoelastic shell is shown in Fig. 3 a.

From curves 1-8 (Fig. 3a) it can be seen that the early increases in the deflections &;, &, are
observed with the number of waves n = 7. In addition, the deflections for all n waves increase in the
t* = 20 + 40 time interval. The change in the deflections &;, &, in time at the loading rate of the S =

5. 105 MPa
was noted with the number of n =5 waves at the time t* = 12 + 20. The change in &;, &, is

and the numbers of waves n = 5, 9 is shown in Fig.4a. Here, an increase in deflections

influenced by the loading rate § > 1 - 10° @ and the number of n waves (Fig. 3b). The more S, the

faster the increase in the absolute values of the deflections. The dynamic critical load is approximately
4 times the upper static critical load, i.e. with an increase in the loading rate, PZ increases. The
influence of the viscosity of the shell material on the nature of the change in the deflections &;, &, is
shown in Fig. 4b.

With an increase in the viscosity of the material, the values of the deflections &;, &, at a

constant loading rate (S = 2 - 10° Mpa) (Fig. 4b) increase. Figure 2.b shows the curves & (t*), &,(t*)

for an isotropic and orthotropic shell at a loading rate of S = 2 - 1052 T and the number of n = 5

waves. The parameters of the considered isotropic and orthotropic shell are taken to be the same,
except for their rigidity. The stiffness ratios for the annular and axial directions for the isotropic shell

are equal to B,,/B;; = 1, and for the orthotropic Eﬁ = 0.78. Curves 1, 2 and 5, 6, respectively,

11
reflect the dependence of & ~t*, &,~t* for an isotropic elastic and viscoelastic shell, and curves 3, 4

- for a viscoelastic orthotropic shell. It can be seen that with an increase in the rigidity of B;,, the rate
of increase in the deflections &, ¢, and the maximum from the value decrease. Taking into account
the viscosity of the material of the isotropic shell, as well as the orthotropic deflections, increase, and
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the nature of the motion becomes more complicated.
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Figure. 2a. The relationship between &1, &, and  at various S and N.
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Figure. 3. Dependence between &,, &, and £ at different numbers of waves N(a) and loading
rate S(b).
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Figure. 4b. Change in deflection &4, &, depening on the viscous properties of the material.

5. CONCLUSIONS.

In this work, the problem of nonlinear dynamic stability of orthotropic cylindrical shells with
viscoelastic properties subjected to compressive loads has been investigated within a geometrically
nonlinear formulation. On the basis of the Boltzmann—Volterra hereditary theory, constitutive
relations describing the time-dependent behavior of the shell material were incorporated into the
governing equations. The application of the Bubnov—Galerkin method allowed the original partial
integro-differential equations to be transformed into a system of nonlinear ordinary differential
equations, which were solved numerically using the Runge—Kutta method.

The obtained results demonstrate that the dynamic response of viscoelastic cylindrical shells
is strongly influenced by the loading rate, material viscosity, and the number of circumferential and
longitudinal waves. It has been established that an increase in the loading rate leads to a significant
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growth of the dynamic critical load in comparison with the static critical load. For the considered
cases, the dynamic critical load may exceed the static one by approximately four times, which
confirms the necessity of dynamic analysis when assessing shell stability.

It is also shown that an increase in material viscosity accelerates the growth of deflections and
promotes earlier onset of dynamic buckling. Furthermore, the presence of initial geometric
imperfections considerably reduces the stability margin and intensifies the transition from stable
vibrations to unstable motion. Orthotropic shells exhibit different stability characteristics compared
with isotropic ones, and the stiffness ratio in axial and circumferential directions plays an important
role in determining the buckling behavior.

The results obtained in this study can be used in the design and analysis of thin-walled shell
structures operating under dynamic compressive loads. The developed approach provides a reliable
theoretical basis for predicting dynamic buckling and may be extended to other types of shells and
loading conditions.

REFERENCES

[1] Author(s), M.H. Ilyasov, Dynamic stability of viscoelastic plates, Int. J. Eng. Sci. 45 (2007) 111-
122.

[2] R.T.A. Robinson, S. Adali, Nonconservative stability of viscoelastic rectangular plates with free
edges under uniformly distributed follower force, Int. J. Mech. Sci. 107 (2016) 150-159.

[3] Author(s), A. Ilyushin, B. Pobedrya, Fundamentals of Mathematical Theory of
Thermoviscoelasticity, Nauka, Moscow, 1970.

[4] A.S. VolI’mir, Nonlinear Dynamics of Plates and Shells, Nauka, Moscow, 1972.

[5] A.S. Vol’mir, Shells in Fluid and Gas Flow: Problems of Hydroelasticity, Nauka, Moscow, 1979.

[6] E. Grigolyuk, V. Mamai, Non-Linear Strain of Thin-Walled Constructions, Nauka, Moscow,
1997.

[7] M.A. Koltunov, On the calculation of flexible gently sloping orthotropic shells with linear
heredity, Bull. Moscow State Univ. 5 (1964) 79-88.

[8] Nonlinear flutter response of pre-heated functionally graded panels, Int. J. Comput. Mater. Sci.
Eng. 7 (1&2) (2018) 1850012. [75] F.W. Xia, Y.P. Feng, D.W. Zhao, Finite element multi-mode
approach to thermal postbuckling of functionally graded p

[9] A.L. Karimov, S.Sh. Baxritdinov, M.G. Azambayev. Theoretical Study of the Movement Process
in the Vibration of Cotton Seeds. Journal of Advanced Research in Dynamical and Control
Systems. Vol. 12, 05-Special Issue, pp-835-840 (2020).
http://doi.org/10.5373/JARDCS/V12SP5/20201823

[10] R.Muradov, B. Mardonov, A.I. Karimov. Theoretical and Experimental Studies of the Effect
of Inclined Scraper on Raw Cotton from Mech Surface. World Journal of Mechanics, USA. 2014,
4,371-377.

[11] S.Khusanov,A.Makhkamov,R.Muradov,A.l.Karimov. Study of the Effect of the Mobile Floor
of the Separator Devise on the Cotton Section. International Jurnal of Psychosocial
Rehabilitation,Vol.24, Issue 05,2020.ISSN:1475-7192.6473-6481 pp.

[12] M. Ismanov, A. Karimov. The action of shock waves on cylindrical panels. AIP Conference
Proceedings, Vol.3045, Iss.1, Article ID 030101 (2024). https://doi.org/10.1063/5.0197285

[13]  Ismanov M., Azizbek A., Hushnid M, Dedaxuja F. Theoretical and experimental study of the
law of distribution of non-stationary heat flux in raw cotton stored in the bunt. AIP Conference
Proceedings, Vol.2789, Iss.1, Article ID 040106(2023). https://doi.org/10.1063/5.0145484

[14] A. Anvarjanov, S. Kozokov, R. Muradov. Analysis of research on changing the surface of the
grid in a device for cleaning cotton from fine impurities. Scientific and Technical Journal
Namangan Institute of Engineering and Technology. Vol. 9, Iss.1 (2024).

[15] D. Qodirov, M. Ismanov. Stable algorithms for the identification of delayed control objects
based on input and output signals. AIP Conference Proceedings, Vol.3045, Iss.1, Article ID

International Scientific-Electronic Journal “Pioneering Studies and Theories”, n

Volume 2. Issue 1. 2026




International Scientific-Electronic Journal “Pioneering Studies and Theories” N 0 1

ISSN: 3060-5105 Volume 2
www.pstjournal.uz January, February, March 2026

030103 (2024). https://doi.org/10.1063/5.0197284
[16] A.Karimov, M. Ismanov, S. Bahriddinov. Theoretical study of the law of distribution of non-

stationary heat flux in vertical and horizontal layers of raw cotton (stored in a cotton riot). AIP
Conference Proceedings, Vol.3122, Iss.1, Article ID 100005 (2024).
https://doi.org/10.1063/5.0217431

[17] N. Sharibaev, A. Jabborov, R. Rakhimov, Sh. Korabayev and R. Sapayev. A new method for
digital processing cardio signals using the wavelet function. BIO Web of Conferences. 2024. Vol.
130, Article No 04008. https://doi.org/10.1051/bioconf/202413004008

[18] Sh. Korabayev, J. Soloxiddinov, N. Odilkhonova, R. Rakhimov, A. Jabborov and A.A.
Qosimov. A study of cotton fiber movement in pneumomechanical spinning machine adapter.
E3S Web of Conferences. 2024. Vol. 538, Article No 04009.
https://doi.org/10.1051/e3scont/202453804009

International Scientific-Electronic Journal “Pioneering Studies and Theories”, n

Volume 2. Issue 1. 2026



