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Abstract: In this article, the stability of a cylindrical shell is investigated in a geometric 
nonlinear setting. The cylindrical shell is subjected to static and dynamic influences. The shell 
material is orthotropic and has rheological properties that are described by the hereditary 
Boltzmann-Voltaire theory. The characteristic deflections equal to the shell thickness are taken as a 
criterion for dynamic buckling. As a result of the study, the character of measuring the deflection of 
the shell, taking into account the rheological properties of the material, was obtained. It was revealed 
that with an increase in the loading rate, the dynamic critical load increases several times in 
comparison with the static one. 
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1. INTRODUCTION  
Thin-walled cylindrical shells are widely used in modern engineering structures such as aerospace 
vehicles, pipelines, pressure vessels, storage tanks, and marine constructions. These structural 
elements often operate under complex loading conditions that include static, dynamic, and impact-
type compressive forces. Under such circumstances, the problem of stability becomes one of the most 
critical aspects in ensuring the reliability and safety of structures. Numerous experimental and 
theoretical investigations have shown that thin shells are highly sensitive to imperfections, material 
properties, and loading rates. In many cases, the critical loads predicted by classical linear stability 
theory significantly overestimate the actual buckling loads observed in practice. 

To obtain more accurate predictions, it is necessary to employ geometrically nonlinear 
theories that take into account large deflections comparable with the shell thickness. In addition, real 
structural materials frequently exhibit time-dependent behavior such as creep and stress relaxation. 
These effects can be adequately described by viscoelastic constitutive models based on hereditary 
integral relations, among which the Boltzmann–Volterra theory is widely accepted. The incorporation 
of viscoelasticity into stability analysis allows a more realistic representation of material behavior 
under dynamic loading. 

Another important factor influencing shell stability is the presence of initial geometric 
imperfections. Such imperfections inevitably arise during manufacturing, transportation, and 
assembly processes and can drastically reduce the load-carrying capacity of shells. Therefore, 
accounting for initial imperfections together with material viscoelasticity and geometric nonlinearity 
is essential for reliable stability assessment. 

The present study is devoted to the investigation of nonlinear vibrations and dynamic stability 
of orthotropic viscoelastic cylindrical shells subjected to compressive loads. The governing nonlinear 
integro-differential equations are derived using the classical shell theory with geometric nonlinearity. 
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The Bubnov–Galerkin method is applied to reduce the problem to a system of ordinary differential 
equations, which is subsequently solved numerically using the Runge–Kutta method. The influence 
of loading rate, material viscosity, orthotropy, and wave numbers on the shell response and dynamic 
buckling behavior is analyzed in detail. 

 
2. LITERATURE REVIEW. 

 Let us consider a cylindrical shell that perceives the ultimate compressive forces (Fig. 1). It is 
assumed that there is no wave process of stress propagation in the middle surface. Let the shell be 
hinged at the ends with rigid frames. 

 
Figure 1. Cylindrical shell that can withstand extreme compressive loads. 

 
 Let us approximate the expression for the deflection of the function of spatial coordinates and 
time by the expression [3] corresponding to the static solutions of the first approximation, but taking 
into account the possible changes in the number of nodal lines in different directions. 

𝑤(𝑥, 𝑦, 𝑡) = 𝑓(𝑡)(𝑠𝑖𝑛
௠஻௫

௅
𝑠𝑖𝑛

௡௬

ோ
+ 𝜓 𝑠𝑖𝑛ଶ ௠஻௫

௅
+ 𝜙ଵ),    

 (1) 
parameter 𝑓(𝑡) - characterizes the deflection arrow of the shell; 𝐿 - length; 𝑅 - radius; 𝑚 - the number 
of half-waves along the generatrix; 𝑛 number of waves in a circle; 𝜓 is the ratio of the "asymmetrical" 
component of the deflection to the symmetrical one; 𝑓𝜙ଵ defines the axisymmetric deflection 
associated with the "deflection" of the frames. 

We consider the shell "imperfect", i.e. having some initial imperfection in shape. Initial 
imperfections in the shape of the shell usually arise during the manufacture, transportation and 
installation of products, as well as during the design of the shell elements. 

It is known that the initial imperfections of the shape play a significant role in the behavior of 
thin-walled shells; therefore, it is very important to take them into account when calculating shells 
for strength and stability. Often these imperfections are accounted for as initial deflection deviations. 
In the problem under consideration, we take the initial deflection of the deflection in the same form 
as the total deflection, that is,  

𝑤௢ = 𝑓௢(𝑠𝑖𝑛
௠గ௫

௅
𝑠𝑖𝑛

௡௬

ோ
+ 𝜓 𝑠𝑖𝑛ଶ ௠గ௫

௅
+φ)     

 (2) 
For this problem, the initial equations will be 

𝛻ସ(𝑤 − 𝑤௢) =
ଵଶ

௛య
[𝐿(𝑤, 𝐹) + 𝛻௞𝐹 + 𝐸෨ + 𝑃෨]

𝛻ఉ
ସ𝐹 = −𝐵ଵଵ ቂ

ଵ

ଶ
൫𝐿(𝑤, 𝑤) − 𝐿(𝑤௢, 𝑤௢)൯ + 𝛻௞𝑤 − 𝛻௞𝑤௢ቃ +

𝐵ଵଵ ∫ 𝐺
௧

௢
(𝑡 − 𝜏) ቂ

ଵ

ଶ
൫𝐿∗(𝑤, 𝑤) − 𝐿∗(𝑤௢, 𝑤௢)൯ + 𝛻௞𝑤 − 𝛻௞

∗𝑤௢ቃ 𝑑𝜏⎭
⎪
⎬

⎪
⎫

    

  (3) 
Substituting (1) and (2) into the right-hand side of the second equation (3) and integrating, we 

determine the stress function in the middle surface 

𝐹 = 𝐵ଵଵ ቀ𝐾ଵ 𝑐𝑜𝑠
ଶ௠గ

௅
+ 𝐾ଶ 𝑐𝑜𝑠

ଶ௡௬

ோ
+ 𝐾ଷ 𝑠𝑖𝑛

௠గ௫

௅
𝑠𝑖𝑛

௡௬

ோ
+ 𝐾ସ 𝑠𝑖𝑛ଷ ௠గ௫

௅
𝑠𝑖𝑛

௡௬

ோ
−

௉௬మ

ଶ
−

௤ோ

ଶ௛
𝑥ଶቁ (4) 

here 𝑞 is the intensity of the external pressure; 
𝑃 is the intensity of dynamic compressive forces applied to the ends of the shell.  
Applying the Bubnov-Galerkin method to the first equation of system (3), we obtain  
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∫ ∫ 𝑋 𝑠𝑖𝑛 𝑟 𝑥 𝑠𝑖𝑛 𝑠 𝑦𝑑𝑥𝑑𝑦 = 𝑜,
ଶగோ

௢

௅

௢
                    
(5) 

∫ ∫ 𝑋 𝑠𝑖𝑛ଶ 𝑟 𝑥𝑑𝑥𝑑𝑦 = 𝑜,
ଶగோ

௢

௅

௢
                   (6) 

where 

𝑋 =
௛మ

ଵଶ
𝛻ସ(𝑤 − 𝑤௢) − 𝐿(𝑤, 𝐹) − 𝛻௞𝐹 + 𝜌

డమ௪

డ௧మ
,               

(7) 
 Integrating (5) and (6) with allowance for (1), (4), and (7), we obtain the equation of motion 
for the shell.  

 
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  
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          
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   

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 (8) 

 the following dimensionless parameters are introduced here: 

𝜉 =
௙

௛
, 𝜉଴ =

௙బ

௛
, 𝑃෠ =

௉

஻భభ

ோ

௛
, 

Тଵ = 𝐵ଵଵ𝑘ଵР෡଴, 𝑇଴ =
1

(𝑚𝜋)ଶ𝑘ଵ ቀ1 −
Р
𝑇ଵ

ቁ
, 

Тଵ = 𝐵ଵଵ ቆ
1

4𝛽ଷ(𝑚𝜋𝑘ଶ)ଶ
−

(𝑚𝜋𝑘ଷ)ଶ

6
ቇ 

When solving systems of equations (8) and in other dynamic problems of viscoelasticity, we 
usually encounter some difficulties, one of which is the calculation of the integral operators 

∫ 𝐺(𝑡 − 𝜏)𝜉ଵ(𝜏)𝑑𝜏,
௧

଴
∫ 𝐺(𝑡 − 𝜏)𝜉ଵ

ଶ(𝜏)𝑑𝜏, ∫ 𝐺(𝑡 − 𝜏)𝜉ଵ𝜉ଶ(𝜏)𝑑𝜏,
௧

଴

௧

଴
      (9) 

included in the equations of motion (8). 
 

3. METHODOLOGY. 
 Before proceeding to the solution of system (8), it is necessary to calculate convolutions of 
the form (9). In the system of equations (8), the argument 𝑡 does not take part in an explicit form.  
When 𝑡 = 0 the following conditions are met:  

𝜉ଵ(0) = 𝜉ଵ
଴, 𝜉ଶ(0) = 𝜉ଶ

଴, 𝜉̇௜௧ = 𝜉ሚଵ
଴, 𝜉̇ଶ௧ = 𝜉ሚଶ

଴. 
because there are always solutions in homogeneous differential equations that differ from zero only 
under the conditions 𝑡 = 0 

𝑦௜(𝑜) = 𝑦௜
଴(𝑜)

𝑦̇௜௧(𝑜) = 0
ൠ ,

𝑦௜(𝑜) = 0

𝑦̇௜௧(𝑜) = 0
ൠ ,

𝑦௜(𝑜) = 𝑦௜
଴

𝑦̇௜௧(𝑜) = 𝑦෤௜
௢ቋ 

For carefully manufactured casings, the amplitude of the initial deflection can be calculated 
to be approximately 0.001; 0.0001 times the thickness. These data, as shown in [1], are in satisfactory 
agreement with the results of experiments related to carefully manufactured samples. Therefore, we 
will accept  

𝜉ଵ
௢ = 𝜉ଶ

௢ = 0.1 ⋅ 10ିଷ, 𝜉ሚଵ
଴ = 𝜉ሚଶ

௢ = 0,   (10) 
The 𝜉ଵ(𝜏), 𝜉ଶ(𝜏) functions included in the integral operators in (8) can be represented as a 

power series [4] 
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𝜉ଵ(𝜏) = ∑ 𝛲௡
௄ୀ଴ 𝜏௄ , 𝜉ଶ(𝜏) = ∑ 𝑞௡

௄ୀ଴ ௄
𝜏௄,         (11) 

Let 𝜉ଵ(𝜏), 𝜉ଶ(𝜏) be a real smooth function with the integral 0 ≤ 𝜏 ≤ ∞, 𝑛 - the derivative with 
respect to 𝜏. Then the functions 𝜉ଵ, 𝜉ଶ can be expanded in a Taylor series at the point 𝜏଴ = 0. 

𝜉ଵ(𝜏) = 𝜉ଵ(0) + 𝜉ଵ
ଵ(0)𝜏 +

ଵ

ଶ!
𝜉ଵ

ᇳ(0)𝜏ଶ+. . . +
ଵ

௡!
𝜉ଵ

(௡)
(0)𝜏௡

𝜉ଶ(𝜏) = 𝜉ଶ(0) + 𝜉ଶ
ଵ(0)𝜏 +

ଵ

ଶ!
𝜉ଶ

ᇳ(0)𝜏ଶ+. . . +
ଵ

௡!
𝜉ଶ

(௡)
(0)𝜏௡

ቑ  (11) 

Comparing the series (11) we find the unknown coefficients Рк,𝑞к  
 

𝑃଴ = 𝜉ଵ(0)

𝑃ଵ = 𝜉ଵ
ᇱ(0)

𝑃ଶ =
ଵ

ଶ!
𝜉ଵ

ᇱᇱ(0)

. . .

. . .

𝑃௡ =
ଵ

௡!
𝜉ଵ

(௡)(0)⎭
⎪⎪
⎬

⎪⎪
⎫

        (12)                       

𝑞଴ = 𝜉ଶ(0)

𝑞ଵ = 𝜉ଶ
ᇱ(0)

𝑞ଶ =
ଵ

ଶ!
𝜉ଶ

ᇱᇱ(0)

. . .

. . .

𝑞௡ =
ଵ

௡!
𝜉ଶ

(௡)(0)⎭
⎪⎪
⎬

⎪⎪
⎫

      

        (13) 
The derivatives 𝜉ଵ

௡(0), 𝜉ଶ
௡(0) (𝑛 = 1,  2,  3) are determined from the system of equations (8) 

with 𝜏 = 0, then (11) Taking into account (12-13) will take the following form 

𝜉ଵ(𝜏) = ∑
ଵ

௄!
𝜉ଵ

(௞)
(0)𝜏௞௡

௞ୀ଴

𝜉ଶ(𝜏) = ∑
ଵ

௄!
𝜉ଶ

(௞)
(0)𝜏௞௡

௞ୀ଴

ቑ     (14) 

 According to d'Alembert's signs, if 𝑙𝑖𝑚
௡→ஶ

𝐷௡
∗ = 𝐷∗ exists, then with 𝐷∗ ≺ 1 this series is called 

absolutely convergent, with 𝐷∗ ≻ 1 - absolutely divergent, where 

𝐷௡
∗ =

|𝑎௡ାଵ𝑡௡ାଵ|

|𝑎௡𝑡௡|
, 

In the case under consideration 

𝐷௡
∗ =

ଵ

௞ାଵ
, 𝑅ሜ = |𝜏଴| ⊲

ଵ

௟௜௠ೖ→ಮ
భ

ೖశభ

→ ∞,   (15) 

where 𝑅 is the radius of convergence. This means that the series (14) under consideration absolutely 
converge in the −∞ ≺ 𝜏଴ ≺ ∞ interval and in these series, it is possible to limit ourselves to four 
terms, since the other terms rapidly tend to zero. 

Substituting (14) in ∫ 𝐺ଵଵ(𝜏 − 𝑆)𝜉ଵ(𝑆)𝑑𝑆
ఛ

଴
 and making the substitution 𝜏 − 𝑆 = 𝑢, we get  

න 𝑒
ఛ

଴

ିఉ(ఛି௦)

(𝜏 − 𝑠)ఈିଵ𝜉ଵ(𝑠)𝑑𝑠 = න
𝑒ିఉ(ఛି௦)

(𝜏 − 𝑠)ଵିఈ

ఛ

଴

෍ 𝑃௞𝑠௞

௡

௞ୀ଴

𝑑𝑠 = න
𝑒ିఉ௨

𝑢ଵିఈ

ఛ

଴

෍ 𝑃௞(𝜏௞ − 𝑢)௞

௡

௞ୀ଴

𝑑𝑢 

= ∑ 𝑃ଵ,௡ି௞(𝜏)௡
௞ୀଵ ∫

௘షഁೠ

௨భషഀ

ఛ

଴
𝑢௞𝑑𝑢 − ∑ 𝑃௞𝜏௞௡

௞ୀ଴ ∫
௘షഁೠ

௨భషഀ

ఛ

଴
𝑑𝑢, (16) 

where 

𝛲ଵ,௡ି௞ = ෍ 𝑏௜𝜏௜

௡ି௞

௞ୀ଴

, 

Integral 𝐼 = ∫ 𝑙ିఉ௨𝑢ିఈିଵ𝑑𝑢
ఛ

଴
is a tabulated function. Values in the form of a table are given 

in [4] or integration can be performed numerically, as after integration by parts once, the singularity 
of the function disappears. Integrating 𝐼ଶ = ∫ 𝑙ିఉௌ𝑆ఈା௄ିଵఛ

଴
 by 

∫ 𝑒ିఉ௦ఛ

଴
𝑠ఈା௞ିଵ𝑑𝑠 = 𝑃ଶ,௞(𝜏)𝑒ିఉఛ𝜏ఈିଵ + 𝛾௞ ∫ 𝑒ିఉ௦𝑠ఈିଵ𝑑𝑠,

ఛ

଴
   (17) 

where 

𝑃ଶ,௞(𝜏) = ෍ 𝑐௝

௞

௝ୀ଴

𝜏௝ , 𝑃ଶ,௞ = 0, 𝛾௞ = ෑ
𝑘 − 𝑗 + 𝛼

𝛽

௞

௝ୀଵ

, 𝛾଴ = 1. 
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Substituting (17) into (16), we define the expression for the integral convolutions 

∫
௘షഁ(ഓషೞ)

(ఛି௦)భషഀ

ఛ

଴
∑ 𝛲௞𝑠௞𝑑𝑠 = ∑ 𝛲ଵ,௡ିଵ ቂ𝛲ଶ,௞

௘షഁഓ

ఛభషഀ
+ 𝛾௞ ∫

௘షഁ

௦భషഀ

ఛ

଴
𝑑𝑠ቃ௡

௞ୀଵ − ∑ 𝛲௞𝜏௞௡
௞ୀ଴

௡
௞ୀ଴ ∫

௘షഁೞ

௦భషഀ

ఛ

଴
𝑑𝑠, (18) 

Similarly converted and integral operators 
∫ G(τ − s)ξଶ(s)ds,

த

଴
∫ G(τ − s)ξଵ(s)ξଶ(s)ds, ∫ G(τ − s)ξଵ

ଶ(s)ds,
த

଴

த

଴
  (19) 

Further, the system of equations (8), taking into account (19), is solved by the numerical 
Runge-Kutta method with the following initial data 

𝛽ଵଵ

𝜌଴𝑐ଶ
= 1,

𝛽ଶଶ

𝛽ଵଵ
= 𝑛ଵ = 0,78;

𝛽ଶଶ

𝛽ଵଵ
= 𝑛ଶ = 0,004;

2𝛽

𝛽ଵଵ
= 𝑛ଷ = 0,6; 

 

𝛽ଵ =
𝑛ଵ

𝑛ଵ − 𝑛ଶ
ଶ , 𝑘ଵ = 0.01; 𝑘ଶ = 0.01; 𝐺ଵଵ(𝑡) = 𝐴௢𝑒ିఈ೚௧𝑡ఉబିଵ, 

 

𝐴௢ = 0.0048; 𝛼௢ = 0.2; 𝛽௢ = 0.05;
𝐺ଵଶ

𝐺ଵଵ
= 𝑁ଷ = 0.06;

𝐺ଶଶ

𝐺ଵଵ
= 𝑁ଶ = 0.38; 

𝐺

𝐺ଵଵ
= 0.107; 𝑃 = 𝑠𝑡, 𝑡∗ = 𝜏 =

𝑐𝑡

𝑅
 

 
 

 
4. ANALYSIS AND RESULTS. 

For visco-elastic shells, the nature of the change in the deflections 𝜉ଵ, 𝜉ଶ in time at various 
dynamic loads, given in Figures 2-4. Various series of curves at 𝑛 = 3 in Fig. 2a refer to those loaded 

with 𝑆 = 0,8;  1,2;  2 ⋅ 10ହ ெ௉௔

௦
 velocities for viscoelastic shells. In this case, significant increases in 

the 𝜉ଵ and 𝜉ଶ deflections are observed in the 𝑡∗ = 20 ÷ 40 time interval at 𝑆 = 3 ⋅ 10ହ ெ௉௔

௦
. The 

influence of the number of waves 𝑛 at a constant loading rate 𝑆 on the changes in the deflections 𝜉ଵ, 
𝜉ଶ for a viscoelastic shell is shown in Fig. 3 a. 

From curves 1-8 (Fig. 3a) it can be seen that the early increases in the deflections 𝜉ଵ, 𝜉ଶ are 
observed with the number of waves 𝑛 = 7. In addition, the deflections for all 𝑛 waves increase in the 
𝑡∗ = 20 ÷ 40 time interval. The change in the deflections 𝜉ଵ, 𝜉ଶ in time at the loading rate of the 𝑆 =

5 ⋅ 10ହ ெ௉௔

௦
 and the numbers of waves 𝑛 = 5,  9 is shown in Fig.4a. Here, an increase in deflections 

was noted with the number of 𝑛 = 5 waves at the time 𝑡∗ = 12 ÷ 20. The change in 𝜉ଵ, 𝜉ଶ is 

influenced by the loading rate 𝑆 ≻ 1 ⋅ 10ହ ெ௉௔

௦
 and the number of 𝑛 waves (Fig. 3b). The more 𝑆, the 

faster the increase in the absolute values of the deflections. The dynamic critical load is approximately 
4 times the upper static critical load, i.e. with an increase in the loading rate, 𝑃௖௥

ௗ  increases. The 
influence of the viscosity of the shell material on the nature of the change in the deflections 𝜉ଵ, 𝜉ଶ is 
shown in Fig. 4b. 

With an increase in the viscosity of the material, the values of the deflections 𝜉ଵ, 𝜉ଶ at a 

constant loading rate (𝑆 = 2 ⋅ 10ହ ெ௉௔

௦
) (Fig. 4b) increase. Figure 2.b shows the curves 𝜉ଵ(𝑡∗), 𝜉ଶ(𝑡∗) 

for an isotropic and orthotropic shell at a loading rate of 𝑆 = 2 ⋅ 10ହ ெ௉௔

௦
 and the number of 𝑛 = 5 

waves. The parameters of the considered isotropic and orthotropic shell are taken to be the same, 
except for their rigidity. The stiffness ratios for the annular and axial directions for the isotropic shell 

are equal to Вଶଶ Вଵଵ⁄ = 1, and for the orthotropic 
Вమమ

Вభభ
= 0.78. Curves 1, 2 and 5, 6, respectively, 

reflect the dependence of 𝜉ଵ~𝑡∗, 𝜉ଶ~𝑡∗ for an isotropic elastic and viscoelastic shell, and curves 3, 4 
- for a viscoelastic orthotropic shell. It can be seen that with an increase in the rigidity of Вଵଵ, the rate 
of increase in the deflections 𝜉ଵ, 𝜉ଶ and the maximum from the value decrease. Taking into account 
the viscosity of the material of the isotropic shell, as well as the orthotropic deflections, increase, and 
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the nature of the motion becomes more complicated. 

 
Figure. 2a. The relationship between 𝝃𝟏, 𝝃𝟐 and 𝒕ො at various 𝑺 and 𝑵. 

 
Figure. 2b. The relationship between 𝝃𝟏, 𝝃𝟐 and 𝒕ො at various 𝑺 and 𝑵. 

 

 
Figure. 3. Dependence between 𝝃𝟏, 𝝃𝟐 and 𝒕ො at different numbers of waves N(a) and loading 

rate S(b). 
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Figure.4a. Change in the deflection 𝝃𝟏, 𝝃𝟐 depending on the number of N waves. 

 
Figure. 4b. Change in deflection 𝝃𝟏, 𝝃𝟐 depending on the viscous properties of the material. 

 
5. CONCLUSIONS. 

In this work, the problem of nonlinear dynamic stability of orthotropic cylindrical shells with 
viscoelastic properties subjected to compressive loads has been investigated within a geometrically 
nonlinear formulation. On the basis of the Boltzmann–Volterra hereditary theory, constitutive 
relations describing the time-dependent behavior of the shell material were incorporated into the 
governing equations. The application of the Bubnov–Galerkin method allowed the original partial 
integro-differential equations to be transformed into a system of nonlinear ordinary differential 
equations, which were solved numerically using the Runge–Kutta method. 

The obtained results demonstrate that the dynamic response of viscoelastic cylindrical shells 
is strongly influenced by the loading rate, material viscosity, and the number of circumferential and 
longitudinal waves. It has been established that an increase in the loading rate leads to a significant 
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growth of the dynamic critical load in comparison with the static critical load. For the considered 
cases, the dynamic critical load may exceed the static one by approximately four times, which 
confirms the necessity of dynamic analysis when assessing shell stability. 

It is also shown that an increase in material viscosity accelerates the growth of deflections and 
promotes earlier onset of dynamic buckling. Furthermore, the presence of initial geometric 
imperfections considerably reduces the stability margin and intensifies the transition from stable 
vibrations to unstable motion. Orthotropic shells exhibit different stability characteristics compared 
with isotropic ones, and the stiffness ratio in axial and circumferential directions plays an important 
role in determining the buckling behavior. 

The results obtained in this study can be used in the design and analysis of thin-walled shell 
structures operating under dynamic compressive loads. The developed approach provides a reliable 
theoretical basis for predicting dynamic buckling and may be extended to other types of shells and 
loading conditions. 
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